フェーズ操作による 量子機械学習

研究駆動コース 26R 林慶一郎

(2)目次 Presenter:林慶一郎 (1)表紙 (2)目次 (3)研究の動機や背景 (4)研究目的 (5)研究方法 (6)まとめ・結論 (7)展望 (8)参考文献表

図1 自動で設計された量子回路の - 部

(3)研究の動機や背景

Presenter:林慶一郎

3

脳の病に苦しむ経験から…

脳を物質として捉えたい!

(3)研究の動機や背景

Presenter:林慶一郎

(いらすとや)

3

偶然聴講した量子コンピュータに関する研究発表を聞いて…

脳の分子レベルでの振る舞いを解明する には量子コンピュータしかない!!! 次代の医学ではコンピュータサイエンスが 必須なはず、脳相手なら量子だ~!

(4)研究目的 Presenter:林慶一郎 大型データの処理 DUANTUM ・量子的な振る舞いをするデータの処理 ・量子コンピュータの特性を 最大限活用した機械学習

これらを追求した量子画像処理の新手法を確立する。

(いらすとや)

(5-1)理論の構築/畳み込み

Presenter:林慶一郎

図8 当手法でのマッピングとフィルター

図7 一般的な畳み込み手法

(5-1)理論の構築/畳み込み(障壁)									Presenter : 林慶一郎	
	•	000 000	000 001	000 010	000 011	000 100	000 101	000 110	000 111	
		001 000	001 001	001 010	001 011	001 100	001 101	001 110	001 111	
		010 000	010 001	010 010	010 011	010 100	010 101	010 110	010 111	
		011 000	011 001	011 010	011 011	011 100	011 101	011 110	011 111	格子を超えてフィルターを
		100 000	100 001	100 010	100 011	100 100	100 101	100 110	100 111	─ 当てることができない。
		101 000	101 001	101 010	101 011	101 100	101 101	101 110	101 111	
		110 000	110 001	110 010	110 011	110 100	110 101	110 110	110 111	•
		111 000	111 001	111 010	111 011	111 100	111 101	111 110	111 111	図8 当手法でのマッピング -
										12

(5-1)理論の構築/ずらした画像で障壁克服 Presenter: 株慶-郎

図9 ずらした画像

- フィルターの大きさ分ずらした画像を用意
 28×28のMNISTだと初めに4×4枚 本研究独自のポイント1
- 入力データサイズに制約がある中で、
 パディングは必須のため便利な方法

(5-1)理論の構築/同時摂動法の採用 Presenter: 林慶一郎

$$f(\vec{x} + c\vec{s}) = f(\vec{x}) + c \sum_{i=1}^{n} \frac{\partial f(\vec{x})}{\partial x_{i}} s_{i} + \frac{c^{2}}{2} \sum_{i,j=1}^{n} \frac{\partial^{2} f(\vec{x})}{\partial x_{i} \partial x_{j}} s_{i} s_{j} + \cdots, \quad \leftarrow \overline{\tau} \cdot \overline{\tau} = -\overline{\tau} = \overline{\tau} = \overline{\tau} + c \cdot \overline{\tau} + c$$

(5-2)実装/量子回路の構築を自動化

Presenter : 林慶一郎

Python

Qiskit, Qulacsの活用し、
 これらの量子回路を自動で
 組み立てるコードを開発

図13 自動化に成功した回路

(5-3)試行と改良/試行2の結果

epoch

損失関数

Presenter : 林慶一郎

損失関数は減少していったが、 精度は向上しなかった。

(5-3)試行と改良/試行3の結果

Presenter:林慶一郎

損失関数 ・試行2と変わらず精度は向上せず。 ・1epochあたり約2時間→約20分 と時間は短縮。 ・安定までが早くなった。 epoch

PyTorchが学習しやすい方向へパラメータを更新 →精度50%を73%にまで向上 本研究の成果

本研究における計算コスト≒各量子ゲートの深さの和 (量子ビット数×深さの平均)

①量子ゲートを減らす 現状: $O(2^{n-m})$ (入力サイズ: 2^{n} , フィルタサイズ: 2^{m})

②量子ゲートの深さを減らす
 現状: O(kⁿ) (2<k<3) (nはゲートに関わる量子ビット数)

Presenter:林慶一郎

Linear手法へ移行できれば速くなる $O(k^n)$ (2<k<3) \downarrow $O(n^2)$

複数の手法でのmulti-controlled gateの深さ(<コスト) Da silva, A. J., & Park, D. K. (2022). Linear-Depth Quantum Circuits for Multi-Qubit Controlled Gates. Phys. Rev. A **106**, 042602

28

(6)まとめ・結論1 Presenter: 株慶一郎 ・理論の構築から実装、精度の向上もできた ・1層だけ量子アルゴリズムを使うというやり方が最も有効な手段(?) ・新規性と汎用性のある量子画像処理手法を提案するに至った

・多次元データの量子画像処理により、機械学習効率の向上が期待される

29

・セキュリティ分野への応用

Presenter : 林慶一郎

セキュリティ分野では、異常感知のシステムにCNNを始めとした機械 学習手法が多く用いられている。近年ナノスケールでの情報を検知で きる量子センシング領域が活発であるが、量子情報を機械学習にかけ る手法として決定的なものは未だ存在しない。汎用的な量子コピュー 夕実機自体の完成が先送りにされる中、NISQ(Noisy Intermediate-Scale Quantum device)を想定した量子機械学習では実用的な機械学 習精度を実現できずにいる。Shorのアルゴリズムが素因数分解を多項 式時間で解く手法を提案したように、量子コンピュータによる機械学 習を実現すれば、将来的にそれを活用した有益なセキュリティ技術が 開発されるかもしれない。本研究では汎用的な量子コンピュータが実 現した前提で、ゲート操作のパラメータ値を更新しながらヒルベルト 空間にマッピングした情報から機械学習を行う手法を開発できた。

(7)展望

これから1,2年を目安に Linear手法を用いた量子コンピュータ向け フレームワークの改良/新規作成 ゲートコスト削減に向け、手法の改良

(8)参考文献

[1] F. Tacchino, C. Macchiavello, D. Gerace, D. Bajoni, "An artificial neuron implemented on an actual guantum processor," npj Quantum Information 5, 1-8 (2019).

[2] S. Mangini, F. Tacchino, D. Gerace, C. Macchiavello, D. Bajoni, "Quantum computing model of an artificial neuron with continuously valued input data,"Mach. Learn.: Sci. Technol. 1 045008 (2020).

[3] F. Tacchino, C. Macchiavello, D. Gerace, D. Bajoni, "Variational learning for quantum artificial neural networks"

[4] F. Tacchino, P. Kl. Barkoutsos, C. Macchiavello, D. Gerace, I. Tavernelli, D. Bajoni, 2020

IEEE International Conference on Quantum Computing and Engineering (QCE), 130-136 (2020).

[5] F Tacchino, P. Barkoutsos, C. Macchiavello, I. Tavernelli, D. Gerace, "Quantum implementation of an artificial feed-forward neural network," Quantum Sci. Technol. 5 044010 (2020).

[6] S. Mangini, F. Tacchino, D. Gerace, D. Bajoni, C. Macchiavello, "Quantum computing models for artificial neural networks" EPL (Europhysics Letters) 134, 10002 (2021).

[7] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, "Parameterized quantum circuits as machine learning models," Quantum Sci. Technol. 4 043001 (2019).

[8] A. Chalumuri, R. Kune, B. S. Manoj, "Training an Artificial Neural Network Using Qubits as Artificial Neurons: A Quantum Computing Approach," Procedia Computer Science, 171, 568-575 (2020).

[9] Y. Li, R-G. Zhou, R. Xu, J. Luo, and W. Hu, "A quantum deep convolutional neural network for image recognition" Quantum Sci. Technol. 5 044003 (2020).

32